
22 A Unified Framework for Vietnamese Information Processing|v1.1

Appendix B: Vietnamese Characters under VISCII and VIQR by Encoding Order (continued)

VISCII
Char VIQR Descriptive Name VISCII Char VIQR Descriptive Name

164
¤ a^� a circumex acute 210 Ò O� O grave

165
¥ a^� a circumex grave 211 Ó O� O acute

166
¦ a^? a circumex hook-above 212 Ô O^ O circumex

167
§ a^. a circumex dot-below 213 Õ a. a dot-below

168
¨ e~ e tilde 214 Ö y? y hook-above

169
© e. e dot-below 215 × u+� u horn grave

170
ª e^� e circumex acute 216 Ø u+? u horn hook-above

171
« e^� e circumex grave 217 Ù U� U grave

172
¬ e^? e circumex hook-above 218 Ú U� U acute

173
 e^~ e circumex tilde 219 Û y~ y tilde

174
® e^. e circumex dot-below 220 Ü y. y dot-below

175
¯ o^� o circumex acute 221 Ý Y� Y acute

176
° o^� o circumex grave 222 Þ o+~ o horn tilde

177
± o^? o circumex hook-above 223 ß u+ u horn

178
² o^~ o circumex tilde 224 à a� a grave

179
³ O+~ O horn tilde 225 á a� a acute

180
´ O+ O horn 226 â a^ a circumex

181
µ o^. o circumex dot-below 227 ã a~ a tilde

182
¶ o+� o horn grave 228 ä a? a hook-above

183
· o+? o horn hook-above 229 å a(a breve

184
¸ i. i dot-below 230 æ u+~ u horn tilde

185
¹ U+. U horn dot-below 231 ç a^~ a circumex tilde

186
º U+� U horn acute 232 è e� e grave

187
» U+� U horn grave 233 é e� e acute

188
¼ U+? U horn hook-above 234 ê e^ e circumex

189
½ o+ o horn 235 ë e? e hook-above

190
¾ o+� o horn acute 236 ì i� i grave

191
¿ U+ U horn 237 í i� i acute

192
À A� A grave 238 î i~ i tilde

193
Á A� A acute 239 ï i? i hook-above

194
Â A^ A circumex 240 ð dd d bar

195
Ã A~ A tilde 241 ñ u+. u horn dot-below

196
Ä A? A hook-above 242 ò o� o grave

197
Å A(A breve 243 ó o� o acute

198
Æ a(? a breve hook-above 244 ô o^ o circumex

199
Ç a(~ a breve tilde 245 õ o~ o tilde

200
È E� E grave 246 ö o? o hook-above

201
É E� E acute 247 ÷ o. o dot-below

202
Ê E^ E circumex 248 ø u. u dot-below

203
Ë E? E hook-above 249 ù u� u grave

204
Ì I� I grave 250 ú u� u acute

205
Í I� I acute 251 û u~ u tilde

206
Î I~ I tilde 252 ü u? u hook-above

207
Ï y� y grave 253 ý y� y acute

208
Ð DD

y

D bar 254 þ o+. o horn dot-below

209
Ñ u+� u horn acute 255 ÿ U+~ U horn tilde

y

VIQR also allows \Ð" to be represented by \Dd" or \dD". See Sec. 4.2.1.

A Unified Framework for Vietnamese Information Processing|v1.1 21

Appendix B: Vietnamese Characters under VISCII and VIQR by Encoding Order

VISCII
Char VIQR Descriptive Name VISCII Char VIQR Descriptive Name

002
� A(? A breve hook-above 112 p p p

005
� A(~ A breve tilde 113 q q q

006
� A^~ A circumex tilde 114 r r r

020
� Y? Y hook-above 115 s s s

025
� Y~ Y tilde 116 t t t

030
� Y. Y dot-below 117 u u u

065
A A A 118 v v v

066
B B B 119 w w w

067
C C C 120 x x x

068
D D D 121 y y y

069
E E E 122 z z z

070
F F F 128 � A. A dot-below

071
G G G 129 � A(� A breve acute

072
H H H 130 � A(� A breve grave

073
I I I 131 � A(. A breve dot-below

074
J J J 132 � A^� A circumex acute

075
K K K 133 � A^� A circumex grave

076
L L L 134 � A^? A circumex hook-above

077
M M M 135 � A^. A circumex dot-below

078
N N N 136 � E~ E tilde

079
O O O 137 � E. E dot-below

080
P P P 138 � E^� E circumex acute

081
Q Q Q 139 � E^� E circumex grave

082
R R R 140 � E^? E circumex hook-above

083
S S S 141 � E^~ E circumex tilde

084
T T T 142 � E^. E circumex dot-below

085
U U U 143 � O^� O circumex acute

086
V V V 144 � O^� O circumex grave

087
W W W 145 � O^? O circumex hook-above

088
X X X 146 � O^~ O circumex tilde

089
Y Y Y 147 � O^. O circumex dot-below

090
Z Z Z 148 � O+. O horn dot-below

097
a a a 149 � O+� O horn acute

098
b b b 150 � O+� O horn grave

099
c c c 151 � O+? O horn hook-above

100
d d d 152 � I. I dot-below

101
e e e 153 � O? O hook-above

102
f f f 154 � O. O dot-below

103
g g g 155 � I? I hook-above

104
h h h 156 � U? U hook-above

105
i i i 157 � U~ U tilde

106
j j j 158 � U. U dot-below

107
k k k 159 � Y� Y grave

108
l l l 160 O~ O tilde

109
m m m 161 ¡ a(� a breve acute

110
n n n 162 ¢ a(� a breve grave

111
o o o 163 £ a(. a breve dot-below

20 A Unified Framework for Vietnamese Information Processing|v1.1

Appendix A: Vietnamese Characters under VISCII and VIQR by Collating Order

Char
VIQR VISCII Char VIQR VISCII Char VIQR VISCII Char VIQR VISCII

A
A 065 N N 078 a a 097 n n 110

Á
A� 193 O O 079 á a� 225 o o 111

À
A� 192 Ó O� 211 à a� 224 ó o� 243

Ä
A? 196 Ò O� 210 ä a? 228 ò o� 242

Ã
A~ 195 � O? 153 ã a~ 227 ö o? 246

�
A. 128 O~ 160 Õ a. 213 õ o~ 245

Å
A(197 � O. 154 å a(229 ÷ o. 247

�
A(� 129 Ô O^ 212 ¡ a(� 161 ô o^ 244

�
A(� 130 � O^� 143 ¢ a(� 162 ¯ o^� 175

�
A(? 002 � O^� 144 Æ a(? 198 ° o^� 176

�
A(~ 005 � O^? 145 Ç a(~ 199 ± o^? 177

�
A(. 131 � O^~ 146 £ a(. 163 ² o^~ 178

Â
A^ 194 � O^. 147 â a^ 226 µ o^. 181

�
A^� 132 ´ O+ 180 ¤ a^� 164 ½ o+ 189

�
A^� 133 � O+� 149 ¥ a^� 165 ¾ o+� 190

�
A^? 134 � O+� 150 ¦ a^? 166 ¶ o+� 182

�
A^~ 006 � O+? 151 ç a^~ 231 · o+? 183

�
A^. 135 ³ O+~ 179 § a^. 167 Þ o+~ 222

B
B 066 � O+. 148 b b 098 þ o+. 254

C
C 067 P P 080 c c 099 p p 112

D
D 068 Q Q 081 d d 100 q q 113

Ð
DD

y

208 R R 082 ð dd 240 r r 114

E
E 069 S S 083 e e 101 s s 115

É
E� 201 T T 084 é e� 233 t t 116

È
E� 200 U U 085 è e� 232 u u 117

Ë
E? 203 Ú U� 218 ë e? 235 ú u� 250

�
E~ 136 Ù U� 217 ¨ e~ 168 ù u� 249

�
E. 137 � U? 156 © e. 169 ü u? 252

Ê
E^ 202 � U~ 157 ê e^ 234 û u~ 251

�
E^� 138 � U. 158 ª e^� 170 ø u. 248

�
E^� 139 ¿ U+ 191 « e^� 171 ß u+ 223

�
E^? 140 º U+� 186 ¬ e^? 172 Ñ u+� 209

�
E^~ 141 » U+� 187 e^~ 173 × u+� 215

�
E^. 142 ¼ U+? 188 ® e^. 174 Ø u+? 216

F
F 070 ÿ U+~ 255 f f 102 æ u+~ 230

G
G 071 ¹ U+. 185 g g 103 ñ u+. 241

H
H 072 V V 086 h h 104 v v 118

I
I 073 W W 087 i i 105 w w 119

Í
I� 205 X X 088 í i� 237 x x 120

Ì
I� 204 Y Y 089 ì i� 236 y y 121

�
I? 155 Ý Y� 221 ï i? 239 ý y� 253

Î
I~ 206 � Y� 159 î i~ 238 Ï y� 207

�
I. 152 � Y? 020 ¸ i. 184 Ö y? 214

J
J 074 � Y~ 025 j j 106 Û y~ 219

K
K 075 � Y. 030 k k 107 Ü y. 220

L
L 076 Z Z 090 l l 108 z z 122

M
M 077 m m 109

y

VIQR also allows \Ð" to be represented by \Dd" or \dD". See Sec. 4.2.1.

A Unified Framework for Vietnamese Information Processing|v1.1 19

like subscribing to a collection of electronic magazines.

These \magazines," called newsgroups, are devoted to

particular topics. The \Soc.Culture.Vietnamese" news-

group is very popular among both Vietnamese and non-

Vietnamese worldwide.

Viet-Std: A non-pro�t group of overseas Vietnamese

and other professionals working on software & hardware

standards for the Vietnamese language. Members of the

group exchange ideas via electronic mail and meetings.

Vowel: In this text, a generic term applying to all Viet-

namese vowels and their various combining forms, e.g., a,

å, and ¡. See Base Vowel.

18 A Unified Framework for Vietnamese Information Processing|v1.1

ASCII: American Standard Code for Information Inter-

change, a 128-character code used almost universally by

computers for representing and transmitting character-

s data, in which each character corresponds to a deci-

mal number between 0 and 127. Eight- or nine-bit codes

of which the �rst 128 characters correspond to ASCII

are called Extended ASCII; the additional characters are

used to provide graphic characters for roman alphabets

with diacritics, non-roman alphabets, special screen ef-

fects, etc.

Base Vowel: In this text, the unaccented Vietnamese

vowels: a å â e ê i o ô ½ u ß y (and their capitals). Contrast

this with Vowel.

C0 Space: \Control characters" at code positions with

hex values 00 through 1F.

C1 Space: \Control characters" at code positions with

hex values 80 through 9F.

Code: In data communication, the numeric or internal

representation for a character, e.g., in ASCII.

Code Page: Name used to denote glyph sets on the IBM

PC. Abbreviated as CP. CP 850 is the multilingual code

page, CP860 is for Portugal, CP863 is for French Canada,

CP865 is for Norway.

Control Character: An ASCII character in the range

0 to 31, plus ASCII character 127, contrasted with the

printable, or graphic, characters in the range 32 to 126.

It is produced on an ASCII terminal by holding down the

CTRL key and typing the desired character.

EBCDIC: Extended Binary Coded Decimal Interchange

Code. The character code used on IBM mainframes. Not

covered by any formal standards but described de�nitive-

ly in [15] and discussed at length in [16].

Floating Diacritics: A multiple-unit encoding ap-

proach for Vietnamese that treats the vowel and its dia-

critics as separate units. The diacritics may either pre-

cede or follow the vowel, or even the word. Contrast this

with Precomposed Character.

Glyph: The physical appearance of a character as dis-

played on the screen or printed on paper.

G0 Space: \Graphic characters" at code positions with

hex values 20 through 7F.

G1 Space: \Graphic characters" at code positions with

hex values A0 through FF.

ISO: International Organization for Standardization. A

voluntary international group of national standards or-

ganizations that issues standards in all areas, including

computers, information processing, and character sets.

ISO 646: The standard 7-bit code set, equivalent to

ASCII [12].

ISO Standard 8859: An ISO standard specifying a se-

ries of 8-bit computer character sets that include char-

acters from many languages. These include ISO Latin

Alphabets 1-9, which cover most of the written languages

based on Roman letters, plus special character sets for

Cyrillic, Greek, Arabic, and Hebrew [5].

ISO 8859/1: ISO Standard 8859 Latin Alphabet Num-

ber 1. Supports at least the following languages: Latin,

Danish, Dutch, English, Faeroese, Finnish, French, Ger-

man, Icelandic, Irish, Italian, Norwegian, Portuguese,

Spanish, and Swedish [5].

ISO 2022 and ISO 4873: ISO standards for switching

code pages [13].

ISO DIS 10646: The prospective 16- and 32-bit Uni-

versal Coded Set, (Draft International Standard) [4].

Latin: Referring to the Latin, or Roman, alphabet, com-

prised of the letters A through Z, or to any alphabet based

upon it.

MS-DOS:Microsoft's Disk Operating System for micro-

computers based on the Intel 80x86 family of CPU chips.

Modi�er: A phonetic diacritical mark. The Vietnamese

modi�ers are: breve (trång, �), circumex (mû, ^), horn

(móc,

�

).

PC: Personal Computer. In this text, the term PC refers

to the entire IBM PC and PS/2 families and compatibles,

which includes the AT, 286, 386, and 486 PC's.

PostScript: A page description language with graphics

capabilities designed for electronic printing. The descrip-

tion is high-level and device-independent. PostScript is a

trademark of Adobe Systems Incorporated.

Precomposed Characters: An encoding approach for

Vietnamese that treats all vowel combinations as single

units. Contrast this with Floating Diacritics.

T

E

X: A computerized typesetting system developed by

Donald Knuth [17], providing nearly everything needed

for high-quality typesetting of mathematical notations as

well as of ordinary text. T

E

X is a trademark of the Amer-

ican Mathematical Society.

Tone Mark: A tonal diacritical mark that indicates

the tone/accent. The Vietnamese tone marks are: acute

(s¡c), grave (huy«n), hook above (höi), tilde (ngã), dot

below (n£ng).

Unicode: A 16-bit multilingual character code proposed

by the Unicode Consortium [3].

Unix: A popular operating system developed at AT&T

Bell Laboratories and noted for its portability.

Usenet: A worldwide network available to users for send-

ing messages (or \news articles") that can be read and

responded to by other users. Participating in Usenet is

A Unified Framework for Vietnamese Information Processing|v1.1 17

of CONTROL or FUNCTION keys. Any enhancement

in compliant applications is a bonus for the user, so long

as such enhancements do not adversely conict with the

minimum expected behavior described here.

5.3 ADAPTING EXISTING VIETNAMESE

APPLICATIONS

A realistic approach to standardization provides for the

inertia against change in existing software applications.

While it is desirable that the standard 8-bit encoding

described here be fully supported, an alternative exists

which is more amenable to rapid adoption. All applica-

tions should provide a means for importing and exporting

data encoded using the VISCII 8-bit encoding table. At

the same time, the VIQR keyboard interface should be

implemented, at least as an optional entry method. Such

moves are highly desirable both for the user and the ven-

dor alike. The user will be able to use the software imme-

diately because of the uniform keyboard interface, as well

as process the same data in di�erent applications and on

di�erent platforms, with increased productivity and in-

teractivity among users. This ease of use means greater

acceptance and a correspondingly larger customer base

for the vendor.

6 SUMMARY & CONCLUSIONS

This paper has presented a proposal for standardization

of Vietnamese information processing. A case has been

made for the necessity of standardization; we hope to have

encouraged vendors and users of Vietnamese alike to work

together toward this goal to bene�t everyone involved.

Various encoding approaches were discussed, leading to

the choice of the VISCII 8-bit encoding proposal. A sin-

gle encoding table was presented that has been shown

in actual practice to work well for Vietnamese including

editing, processing, storage, transfer, font encoding, and

printing. Where 8-bit data handling was not available or

reliable, e.g., electronic mail transport, the Vietnamese

Quote-Readable speci�cation (VIQR) was introduced to

provide a seamless �ltering gateway. VIQR was de�ned

to be input-source-independent and hence has been de-

signed to be applicable to Vietnamese keyboard input as

well as machine data �lters. All of this was shown to have

been integrated into existing environments facilitating the

use of existing tools and applications|a major strength

of the encoding. Finally, these speci�cations have been

linked together seamlessly to include every point in the

input-process/transfer-output cycle of data handling and

provide for a truly uni�ed framework for Vietnamese in-

formation processing.

References

[1] BÕch Hßng Khang. \Institute of Informatics,". Hà Nµi,

Vi®t Nam, February 1991.

[2] B. Jerman-Bla�zi�c, \Will the Multi-octet Standard Char-

acter Set Code Solve the World Coding Problems for In-

formation Interchange?," Computer Standards & Inter-

faces, vol. 8, pages 127{136, 1988.

[3] The Unicode Consortium. The Unicode Standard:

Worldwide Character Encoding Version 1.0. Addison-

Wesley, Reading, MA, �rst edition, October 1991.

[4] ISO Technical Committee, \Universal Multiple-Octet

Coded Character Set (UCS), ISO/IEC DIS 10646-1.2,"

Draft standard, International Organization for Standard-

ization, 1992.

[5] International Organization for Standardization. ISO

8859/x: 8-bit International Code Sets. ISO, 1977.

[6] Famjxu�n Thais. Vi®t Ngæ Cäi Cách. TÑ Häi, Hà Nµi,

Vi®t Nam, March 1948.

[7] PhÕm Xuân Thái. Chæ Vi®t Hþp Lí. Tín-ÐÑc Thß-Xã,

Sài Gòn, Vi®t Nam, April 1958.

[8] J. Postel, \Simple Mail Transfer Protocol," RFC 822,

USC Information Sciences Institute, August 1982.

[9] J. C. Klensin et al., \SMTP Extensions for Transport of

Text-Based Messages Containing 8-bit Characters," In-

ternet draft, Massachusetts Institute of Technology, July

1991.

[10] K. Simonsen, \Character Mnemonics & Character Sets,"

Internet draft, Danish Unix Users Group, January 1992.

[11] K. Simonsen, \Mnemonic Text Format," Internet draft,

Danish Unix Users Group, August 1991.

[12] International Organization for Standardization. ISO 646:

7-bit Coded Character Set for Information Interchange.

ISO, third edition, 1991.

[13] International Organization for Standardization. ISO

2022: 7-bit and 8-bit Coded Character Sets|Code Ex-

tension Techniques. ISO, third edition, 1986.

[14] E. M. van der Poel, \Multilingual Character Encoding

for Internet Messages," Internet draft, Software Research

Associates, Japan, January 1992.

[15] IBM. System/370 Reference Summary{GX20-1850-5,

sixth edition, 1984.

[16] C.E. Mackenzie. Coded-Character Sets: History and De-

velopment. Addison-Wesley, Reading, MA, 1980.

[17] D.E. Knuth. The T

E

Xbook. Addison-Wesley, Reading,

MA, 1984.

Glossary of Terms

Announcer: A character or sequence of characters ap-

pearing in the data that signi�es the start of some special

sequence. In this text, it announces a Vietnamese com-

position sequence.

16 A Unified Framework for Vietnamese Information Processing|v1.1

data stream, such as a terminal application. It is use-

ful because mail headers do not adhere to the VIQR, and

they are more adversely a�ected when interpreted in non-

Literal states.

5.2 VIETNAMESE KEYBOARDING

Keyboards are becoming increasingly internationalized.

As mentioned in the 8-bit speci�cation, this is the major

reason for using the same code positions for those Viet-

namese characters already present in ISO 8859/Latin-1.

A Vietnamese keyboard driver designed to work in the

7-bit-only environment can assume that it will not en-

counter Vietnamese base vowels residing in G1. Keyboard

drivers for the 8-bit environments, like 8-bit electronic

mail agents (Section 5.1), must be prepared to accept

any base vowel, including those encoded in G1.

The real-time echoing behavior of keyboard input

during composition requires further speci�cation. The

options are to report the character only after the compo-

sition sequence has �nished, or to report all intermediate

forms and backspacing over them. Each has its own useful

context as described below.

5.2.1 Immediate Echo for Implicit Composition

Implicit composition is designed to be convenient for a

user processing data that is mostly Vietnamese. As such

it is desirable for the keyboarding user to get immedi-

ate feedback on typed keys. With implicit composition,

the keyboard works in immediate-echomode. Keypresses

immediately generate key events. If a character is sub-

sequently composed with a diacritical mark, a backspace

(typically BS, ASCII 0x08) is sent followed by the new

composed character. This cycle continues as long as com-

position is possible. The sequence of events for the key

sequence "a^�n" under immediate echo is:

1. user types a, a is sent to the application

2. user types ^, BS and â are sent

3. user types �, BS and ¤ are sent

4. user types n, the single key n is sent

The actual backspace character code may vary de-

pending on the system, application, and user settings.

The keyboard interface should use the appropriate code,

and/or allow the user to specify the preferred backspace

character.

5.2.2 Delayed Echo for Explicit Composition

When a composition sequence is started, the keyboard

interface must not send any key events to the application

expecting keyboard input until the sequence is terminat-

ed. Composition may end either naturally when the in-

terface receives a character that cannot be composed into

the sequence, or when the closure character <CLS> is re-

ceived. A single key event for the composed character is

then sent to the application above. Subsequent process-

ing can proceed naturally. Consider what happens when

the user types the sequence "\a^�n" under delayed echo:

1. user types \, no key is sent to the application

2. user types a, no key is sent

3. user types ^, no key is sent

4. user types �, the single key ¤ is sent

5. user types n, the single key n is sent

Or an example involving closure, "t\o+<CLS>":

1. user types t, the key t is sent

2. user types \, no key is sent

3. user types o, no key is sent

4. user types +, no key is sent

5. user types CTRL-A, the single key ½ is sent

Note that without the closure key the keyboard in-

terface would still be left hanging after the "+" key has

been pressed, because the user can still enter a tone mark

as part of the composition sequence.

This delayed-echo behavior for explicit composition

is designed to ensure compatibility with applications ex-

pecting single key events for each character, particularly

in the English state where only explicit composition is

available.

While it is certainly possible to have immediate-echo in

explicit composition or delayed-echo in implicit composi-

tion, these options are not useful and serve only to confuse

the user learning how to use a Vietnamese keyboard. It is

therefore simplest to associate delayed-echo with explicit

composition, and immediate-echo with implicit composi-

tion. These options make natural sense.

This standard de�nes the minimal \look-and-feel"

behavior a user can expect from a compliant Vietnamese

software package. A standardized interface decreases the

required learning time for each new application. This

standard does not preclude other input mechanisms to

improve user-friendliness, e.g., intelligent menu-driven di-

acritics, or to assist in speed typing, e.g., through the use

A Unified Framework for Vietnamese Information Processing|v1.1 15

4.2.5 Vietnamese State

The data stream state is set to Vietnamese when the se-

quence <COM>V or <COM>v is encountered. In Vietnamese

mode, both explicit and implicit compositions are in ef-

fect. The following examples assume that the data stream

is initially in English state:

\vCh\u+~ Vi\e^.t ! Chæ Vi®t

\vChu+~ Vie^.t ! Chæ Vi®t

Chu+~ \vVie^.t ! Chu+~ Vi®t

The availability of implicit composition in Viet-

namese state ensures that the text is not cluttered with

unnecessary <COM>s, as would be the case in Vietnamese

text using explicit composition. Explicit composition is

included to maintain compatibility with the English state

so that there is no need to de�ne additional meanings for

the <COM> sequences. Also, the real-time keyboard com-

patibility mentioned previously is also available in Viet-

namese state through explicit composition.

4.2.6 Character Literals in English and Viet-

namese States

Consider the following example:

\vDu~ng, how are you? ! Dûng, how are yoü

In this example, the sequence "you?" was interpret-

ed as "yoü" because the data stream was still in Viet-

namese state. Thus it is sometimes desirable to suppress

composition altogether without having to switch states.

The literal property of the <COM> character conveniently

accomplishes this. In either Vietnamese or English state,

whenever <COM> is followed by a non-combining character

c the result is the literal character c itself. The <COM> is

discarded from the data stream. To get the <COM> char-

acter literally, use <COM><COM>. Consider the following

examples:

\vddi dda^u? ! ði ðâü

\vddi dda^u\? ! ði ðâu?

\vddi v\o^? ! ði v±

\vddi v\o^\? ! ði vô?

\\ ! \

\\V ! \V

\\M ! \M

\\L ! \L

4.2.7 Closure

The data stream supports another special character used

to generate explicit closure. The closure character is

CTRL-A (ASCII 0x01), known here as <CLS>. When <CLS>

is encountered in the data stream, it immediately termi-

nates any ongoing composition sequence. The <CLS> it-

self is always discarded, unless it appears in the literal

sequence <COM><CLS>.

Explicit closure is useful in real-time character ap-

plications such as keyboard entry, when it is necessary

to specify that a composition sequence has in fact ended

and the input engine should not stay hanging and wait

for more data.

5 SPECIFIC APPLICATIONS

This section outlines application-speci�c guidelines and

conventions that have evolved in the software develop-

ment community. It is intended to be a live and growing

documentation of such discussions as more experience is

gathered. Readers are welcome to participate in these

discussions and contribute to the development of these

guidelines in particular, and to the standards in general.

5.1 ELECTRONIC MAIL OVER 7-BIT CHAN-

NELS

Many of the available channels for electronic mail current-

ly still enforce the 7-bit limitation. The 8-bit character set

de�ned in Section 3 cannot be transported verbatim over

these channels. VIQR plays an important role here, as it

provides for 7-bit transport of Vietnamese text without

the ambiguity problem of deciding what to do with the

double usage of a diacritical/punctuation mark, e.g., the

hook-above or question mark, "?". Because of the 7-bit

nature of these communications channels, mail agents will

typically not encounter those Vietnamese-speci�c base

vowels that are encoded in the G1 area, namely: å, Å,

â, Â, ê, Ê, ô, Ô, ½, ´, ß, and ¿. However, mail agents

designed to work with 8-bit channels are still expected

to handle the occurrence of these characters according to

the complete VIQR, namely to combine base vowels and

diacritical marks as appropriate, for example:

å� ! ¡

In order to be correctly interpreted, electronic mail

messages must explicitly set the language state either in

the headers or text body. One cannot assume what state

the receiving input engine is in at the start of the message,

since messages are not always read in message units, e.g.,

when a �le containing multiple mail messages is scanned.

Furthermore, if a language state speci�cation (\L,

\V or \M) is present in a mail message, it is highly recom-

mended that the message end in the Literal state. This

helps applications reading multiple mail messages in one

14 A Unified Framework for Vietnamese Information Processing|v1.1

4.2.1 Implicit Composition

Implicit composition is useful for data containing a large

percentage of Vietnamese characters.

With implicit composition, a sequence of a base vow-

el followed by one or two diacritical marks is combined

into one Vietnamese letter as long as it is grammatically

legal. This is best illustrated by examples:

a^ ! â

o+? ! ·

½? ! ·

Vie^.t ! Vi®t

Viê.t ! Vi®t

la�^n ! lá^n (not l¤n)

lá^n ! lá^n (not l¤n)

Note in the last two example that the sequence "a^�"

is not grammatically equivalent to "a�^" or "á^". In

general a modi�er ("(", "^", "+") must immediately

follow the appropriate vowel in order to be combined.

The special sequence "dd" is composed into "ð";

"DD", "dD", and "Dd" all represent "Ð".

The base vowels are: a, å, â, e, ê, i, o, ô, ½,

u, ß, y, and their corresponding capitals. The encod-

ing values are those listed in Table 3, the 8-bit VISCII

proposed standard.

The diacritical marks are represented by ASCII char-

acters having correspondingly similar appearances. Ta-

ble 4 lists the 7 ASCII characters used as mnemonic re-

placements for the Vietnamese diacritics; the �rst three

are modi�ers, and the remaining �ve are tone marks.

Table 4: ASCII Mnemonics for Vietnamese Diacritics

Diacritic
Char ASCII Code D¤u

breve
(0x28, left paren trång (�)

circumex
^ 0x5E, caret mû (^)

horn
+ 0x2B, plus sign móc (

�

)

acute
� 0x27, apostrophe s¡c

grave
� 0x60, backquote huy«n

hook above
? 0x3F, question höi

tilde
~ 0x7E, tilde ngã

dot below
. 0x2E, period n£ng

4.2.2 Explicit Composition

Explicit composition is associated with the concept of a

leading character which explicitly announces the compo-

sition. The announcer character is the backslash ("\",

ASCII 0x5C), known here as <COM>. The subsequent com-

bining characters are de�ned in the same way as those

in implicit composition. Thus the examples given above

would appear in explicit composition mode as:

\a^ ! â

\o+? ! ·

Vi\e^.t ! Vi®t

Explicit composition is useful for data containing

mainly English text, as well as for maintaining real-time

compatibility with keyboard character events, as will be

discussed in Section 5.2 on Vietnamese keyboarding.

With the composition methods described, we are now

ready to discuss how they are employed in each of the

three states. The state of the data stream is speci�ed by

the two character sequence <COM>x, where x is speci�ed

below.

4.2.3 Literal State

The appearance of <COM>L or <COM>l in the data stream

initiates the Literal state. This state is intended for near-

perfect transparent literal data transfer. Neither implicit

nor explicit composition is available here, nor is the <COM>

character special, except when it is followed by one of the

six characters l, L, v, V, m or M which initiates one of

the three states.

9

4.2.4 English State

The sequence <COM>M or <COM>m sets the data stream state

to English. In English state, only explicit composition is

supported. This means that in order to generate a Viet-

namese letter, the announcer character <COM> must be

used. A \composition" sequence not preceded by <COM>

will be left uninterpreted. Examples:

\mD\u~ng, how are you? ! Dûng, how are you?

\mKho\e? kh\o^ng? ! Khoë không?

As noted, the sequence "you?" above was not con-

verted into "yoü" because no composition was speci�ed.

9

To e�ect <COM>L, <COM>M, and <COM>V themselves, it is neces-

sary to switch to either English or Vietnamese state and use the

Character Literal feature available there.

A Unified Framework for Vietnamese Information Processing|v1.1 13

use of mnemonics to the 83 invariant ISO-646 [12] graphic

characters, which is a good idea in principle, but sacri-

�ces readability in the process. For example, the counter-

intuitive mnemonics for hook-above (d¤u höi) and tilde

(d¤u ngã) are \2" and \?", respectively, in order to avoid

\~" itself, which is not an invariant. The wide availabil-

ity of ASCII keyboards to the great majority of Viet-

namese users makes this too unreasonable a limitation in

the context of Vietnamese processing. It should be not-

ed that we are in fact arguing in favor of \readability

for most" against \illegibility for all." Furthermore, with

ongoing progress on keyboard and display internation-

alization, e.g., in graphical window environments where

keyboard mapping and font switching are easily imple-

mented, this availability is on the increase, further obso-

leting the restriction.

The greater di�culty is that the two-character �xed-

length encoding

7

cannot provide a readable or mnemo-

nic representation of all Vietnamese characters, in par-

ticular those with 2 diacritical marks. The variable-

length mnemonics

8

have been extended to include all

Vietnamese characters, but this scheme is so cluttered

with announcers and delimiters that readability and ef-

�ciency are near nil, keeping in mind that diacritics are

heavily used in Vietnamese. While machine data transla-

tors will have little trouble with any \mnemonic" scheme,

one that is directly accessible to human users, who are

in many cases typing mail messages using 7-bit editors,

needs to be more user-friendly. A Vietnamese user will

not want to learn or remember among all possible com-

binations that, say, \a5" stands for \¡", nor will she like

typing sequences as long as \& a(� " for some letter in

every word.

To satisfy the readability and exibility require-

ments, a separate speci�cation is necessary. It is bet-

ter to adopt an approach like code-page switching under

ISO-2022 [13] to switch the text into \Vietnamese" mode

and optimize encoding according to the language state.

Recently, van der Poel put forth a mnemonic propos-

al [14] which emphasizes language-speci�c conventions for

these reasons. This proposal provides a means to specify

the language state, each with its own (e�cient) encod-

ing method. Its strength lies in the exible speci�cation

that conformant implementations \need not be able to

display all of the character sets speci�ed"; they have the

option of stating messages such as \undisplayable Greek

appeared here" for unsupported languages (for a more

precise speci�cation, see [14]). This allows networking

communities to determine the best approach for encoding

7

The convention is \&xy", where x is a literal character and y

represents some combining form.

8

The convention is \& xxxx " where xxxx can be an arbitrary

mnemonic sequence.

their own languages. The VIQR convention is compatible

with this approach and should easily be incorporated into

this framework.

The speci�cation here encompasses all data streams

including text transfer, �le I/O, and keyboard entry. This

principle has been the major reason for success in operat-

ing systems such as Unix, in which device-speci�c details

are hidden as much as possible from the applications pro-

grammer, leaving a uniform interface above which tools

such as common library routines can be shared. Indeed as

the keyboard example above has implied, the characters

actually typed by the user are often not di�erent from

the text data that is eventually stored or transmitted. It

is therefore desirable to provide a common base on which

to build data interpreters for all data streams, indepen-

dent of the input source. In actual implementation, this

has greatly facilitated development of the Vietnamese-

capable software base.

In addition, the user stands to bene�t tremendous-

ly from standardization of keyboard entry. One does

not need to learn a di�erent keyboard entry technique

for each di�erent Vietnamese application. If one stan-

dard keyboard model is fully supported by all Vietnamese

software, a user familiar with the standard can sit down

and start typing Vietnamese immediately. This standard

de�nes the minimum expected behavior from compliant

software; any additional input techniques can of course

be incorporated as a superset of the standard behavior.

This is discussed further in Section 5.2 on Vietnamese

keyboarding.

4.2 QUOTED-READABLE SPECIFICATION

(VIQR)

The mnemonic model from Viet-Net is fully employed in

the speci�cation. The Vietnamese QR comprises three

major states: Literal, English, and Vietnamese. The

Literal state is intended for completely transparent han-

dling of literal data (except of course for the escape se-

quences into and out of Literal state). The English and

Vietnamese states are designed for mixed use of English

and Vietnamese, with each optimized in appearance as

well as data size for texts containing mostly English and

Vietnamese, respectively. In either state there exist me-

thods for composing Vietnamese-speci�c characters, us-

ing a base vowel followed by one or two diacritics.

We �rst introduce the concept of implicit and explicit

composition, then discuss how they are used in each of the

states.

12 A Unified Framework for Vietnamese Information Processing|v1.1

Table 3: VISCII 8-bit Encoding Standard Proposal for Vietnamese.

0 1 2 3 4 5 6 7 8 9 A B C D E F

0x NUL SOH � ETX EOT � � BEL BS HT LF VT FF CR SO SI

1x DLE DC1 DC2 DC3 � NAK SYN ETB CAN � SUB ESC FS GS � US

2x SP ! " # $ % & � () * + , - . /

3x 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

4x @ A B C D E F G H I J K L M N O

5x P Q R S T U V W X Y Z [\] ^

6x � a b c d e f g h i j k l m n o

7x p q r s t u v w x y z f j g ~ DEL

8x � � � � � � � � � � � � � � � �

9x � � � � � � � � � � � � � � � �

Ax ¡ ¢ £ ¤ ¥ ¦ § ¨ © ª « ¬ ® ¯

Bx ° ± ² ³ ´ µ ¶ · ¸ ¹ º » ¼ ½ ¾ ¿

Cx À Á Â Ã Ä Å Æ Ç È É Ê Ë Ì Í Î Ï

Dx Ð Ñ Ò Ó Ô Õ Ö × Ø Ù Ú Û Ü Ý Þ ß

Ex à á â ã ä å æ ç è é ê ë ì í î ï

Fx ð ñ ò ó ô õ ö ÷ ø ù ú û ü ý þ ÿ

A Unified Framework for Vietnamese Information Processing|v1.1 11

Table 2: Vietnamese-speci�c characters already present in 8859/Latin-1.

0 1 2 3 4 5 6 7 8 9 A B C D E F

Cx À Á Â Ã È É Ê Ì Í

Dx Ð Ò Ó Ô Ù Ú Ý

Ex à á â ã è é ê ì í

Fx ð ò ó ô õ ù ú ý

(non-breaking space character on Macintosh), or 255.

The list of potentially non-graphic characters in C1 and

G1 can be quite large: nearly 30 characters in MS Win-

dows 3.0 and roughly 25 characters in MS Windows 3.1.

These positions must be populated with upper case char-

acters in consistence with the above philosophy. In ap-

plications where font switching is allowed and upper case

characters are blocked out, a solution is to supply fonts

in pair: a normal font and a capital font. In the capital

font all the positions that should be �lled with lower case

characters are actually �lled with the corresponding up-

per case. When a capital letter in the normal font cannot

be rendered, the user simply switches to the correspond-

ing capital font and types in the corresponding lower case

character.

With the above guidelines, the task is then to lay

out the remaining Vietnamese characters in some fashion,

perhaps even arbitrary. This has been done in such a

way so as to provide some degree of symmetry simply

for aesthetics. It turns out that all the above guidelines

can be adhered to except for compatibility with the letter

 (O tilde) in 8859/Latin-1. Note that the Vietnamese

collating order cannot in any case be preserved, but this is

not a major issue since collation for non-ASCII characters

is well accepted to be a table-lookup problem.

The preceding guidelines have resulted in the VISCII

8-bit Vietnamese encoding proposal listed in Table 3. It

is intended to be a single table that applies to Vietnamese

data handling including storage, processing, transmission,

and font encoding. This greatly simpli�es the integration,

implementation, and usage processes and is indeed one of

the major strengths of the proposal.

4 VIQR:

MNEMONIC ENCODING SPECIFI-

CATION FOR VIETNAMESE

4.1 MOTIVATION

While the 8-bit speci�cation attempts to standardize

Vietnamese encoding in 8-bit environments, much re-

mains to be addressed in important 7-bit environments

such as electronic mail transport and other 7-bit data

lines, as well as in keyboard entry applications where the

interface for generating Vietnamese characters needs to

be standardized.

Transporting more than 128 unique symbols over 7-

bit data channels is not a problem speci�c to the Viet-

namese language. Since its proposal in 1982, the Internet

SimpleMail Transfer Protocol (\SMTP", [8]) has seen un-

relenting e�orts to extend it to accommodate 8-bit and

wider-word data in European Latin scripts and Oriental

ideographic characters (see, e.g., [9]). While clean 8-bit

transport is highly desirable, all mail gateways are not go-

ing to be converted overnight. For the foreseeable future

there is a need for unambiguous transport of Vietnamese

text over existing 7-bit channels.

Indeed there is an ad-hoc standard in use on

the Viet-Net mailing list and the Usenet newsgroup

Soc.Culture.Vietnamese, where mnemonic use of appro-

priate characters to follow a vowel proves to be quite

readable; for example, \Vi®t Nam" would be written as

\Vie^.t Nam". However, this is troubled by the ambiguity

in the multiple roles played by the mnemonic diacritical

marks; for example, does \tha?" mean \tha?" or \thä"?

The Viet-Net convention is not far in concept from a

quoted-readable format proposed by K. Simonsen [10, 11].

which disambiguates such texts by specifying text states

at both the character and character set levels. Unfor-

tunately, in its attempt to provide a universal solution

to mnemonic encoding, the proposal does not provide a

good answer for Vietnamese text. First, it restricts the

10 A Unified Framework for Vietnamese Information Processing|v1.1

Table 1: A sampler of possible C0 usage conicts. Codes selected for this standard proposal are noted with a y.

CODE
COMM. CTRL- GENERAL PRINTER (PC) PC UNIX VI (Unix)

0
NUL @ C string strings

1
SOH A

2y
STX B back screen

3
ETX C INTR INTR INTR INTR

4
EOT D EOF EOF back tab

5y
ENQ E

6y
ACK F forw.screen

7
BEL G BEL BEL BEL BEL

8
BS H BS BS BS BS BS

9
HT I HT HT HT HT HT

10
LF J LF LF LF LF LF

11
VT K VT

12
FF L FF FF FF redraw

13
CR M CR CR CR CR CR

14
SO N wide on(IBM)

15
SI O comp.on(IBM)

16
DLE P Prt.on/o�

17
DC1 Q XOFF XOFF XOFF XOFF

18
DC2 R comp.o�(IBM) retype

19
DC3 S XON XON XON XON

20y
DC4 T wide o�(IBM) forw.tab

21
NAK U clr buf(IBM) kill kill

22
SYN V literal literal

23
ETB W werase werase

24
CAN X kill

25y
EM Y suspend

26
SUB Z EOF suspend

27
ESC [ESC ESC sequence ESC ESC ESC

28
FS \ quit

29
GS] Telnet ESC

30y
RS ^

31
US Windows

A Unified Framework for Vietnamese Information Processing|v1.1 9

of C0 encoding. In any event, the option exists for da-

ta to be sent in some \binary" mode, or to employ the

Vietnamese Quoted-Readable format to be described in

Section 4.

The overwhelming advantage of this approach is that

it is readily and easily integrated into existing environ-

ments without many of the problems plaguing the other

alternatives, if they can at all be integrated. As a testi-

mony to the approach's successful application, this doc-

ument itself was prepared using the T

E

X system under

Unix. The text source was edited in an 8-bit X terminal

window, using a minimally modi�ed

5

version of Elvis,

a public-domain 8-bit version of Unix's Vi text editor.

Both T

E

X (a document preparation system) and Dvi2ps

(a PostScript generator) readily accepted and processed

Vietnamese (8-bit) data transparently. Many other ap-

plications including a spreadsheet, various text viewers,

PostScript and dot-matrix printing, DOS's WordPerfect,

Word, PC Tools, etc., have been tested and seen to op-

erate well with Vietnamese text. Modi�cations, if any,

were primarily in making these applications accept 8-bit

data. An educational teaching tool for Vietnamese has

also been produced using the C programming language

with 8-bit Vietnamese strings embedded in the source

code. With increasing system internationalization, ap-

plications and tools are being made 8-bit \clean," further

facilitating integration of this Vietnamese encoding.

3.2 ENCODING RATIONALE

A basic requirement is to preserve the 7-bit ASCII graph-

ic characters (G0) layout, since the emphasis is on inte-

gration. G0 was therefore left unchanged. For the 6 C0

characters, we �rst lay out the code space and consider

typical usage, a sampler of which is in Table 1. The codes

selected, STX (2), ENQ (5), ACK (6), DC4 (20), EM

(25), and RS (30) present the least possible problems with

data communication and signi�cant applications consid-

ered. The use of ACK, for example, is actually context-

dependent. In those protocols we have reviewed, it is only

considered a \control" character outside of a data frame;

within a data frame it is transfered without special in-

terpretation. To reduce the probability of conict even

further, the 6 least-often used Vietnamese capital letters,

�, �, �, �, �, and �, are encoded into these slots.

The remaining task is to encode the other 128 Viet-

namese characters into the extended ASCII space (C1

and G1). Since no unique international encoding stan-

dard exists in this region, the philosophy is to be as much

conservative as possible so that in the worst case the user

can still use all of the lower case Vietnamese letters.

5

The modi�cations provided the keyboard interface described in

later sections.

The encoding of C1 is less troublesome, although in

application-speci�c contexts it has been found that some

C1 characters are employed with special meanings. A

review of ongoing work on 8-bit mail transport standard-

ization indicates that C1 characters will be fully sup-

ported as graphic characters without special interpreta-

tion. Nevertheless, it is prudent to encode only upper-

case characters into the C1 space.

For G1, the aim is to accommodate the popular PC

character set (code page 850) and to adhere, if possible,

to the 8859/Latin-1 mapping where Vietnamese-speci�c

characters are already encoded.

Experience in development of this encoding on the

MS-DOS platform motivates the consideration of line-

drawing glyphs in the PC character set. In many situa-

tions where both Vietnamese and line-drawing characters

are desirable but font switching is impossible, the best we

can do is to preserve all the lower case Vietnamese charac-

ters and all the single- and double-line drawing character-

s. This means that code positions occupied by single- and

double-line drawing characters must be populated with

upper case letters. With this provision, the MS-DOS us-

er can be supplied with either code pages containing all

Vietnamese glyphs or code pages where a number of up-

per case Vietnamese characters are replaced by PC line-

drawing characters. For existing applications, the user

can choose the code page most appropriate for her pur-

pose. Where the code page with line-drawing characters

must be used, the penalty from missing Vietnamese char-

acters has been minimized by the choice of the infrequent-

ly used ones. For new applications, code page switching

can easily be done on the y, if it is desired.

Compatibility with the 8859/Latin-1 standard is

merely for user friendliness and is not mandatory. It

is natural and reasonable for a user in France to expec-

t that the same keystrokes producing \é" on the screen

for French will do the same for Vietnamese. The moti-

vation for this compatibility is the predominant and in-

creasing availability of 8859/Latin-1 keyboards and font

sets, e.g., Digital's VT-terminal series, Xterm keymap-

s, and Microsoft's Windows. Table 2 lists the subset of

8859/Latin-1 characters in G1 that are also Vietnamese.

6

It can be concluded that all 8859/Latin-1 text that con-

tains characters mostly from G0 (ASCII) and this table,

French text for example, is highly readable in the Viet-

namese environment.

Finally, certain characters in G1 are not render-

able in a number of applications such as character codes

160 (non-breaking space character in 8859/Latin-1), 202

6

Note that the \ð" in Table 2 is actually a similar-looking Ice-

landic \edh" in 8859/Latin-1; the Vietnamese rendering form is

better reected in 8859/Latin-2.

8 A Unified Framework for Vietnamese Information Processing|v1.1

A3. Drop 6 of the \least-used"

4

Vietnamese charac-

ters, typically accented capitals such as �, �,

�, �, �, and �.

A4. Map accented \y" combinations into corre-

sponding \i" combinations, e.g., \kÛ sß" is re-

placed with \kî sß."

A5. Encode into the ASCII control space C0.

Approaches A1 and A2 both satisfy the typical needs

of the word processing environments in which rarely used

ASCII characters can be avoided, or employed by font

shifting. However they both eliminate prospects for inte-

gration of Vietnamese into existing ASCII environments

where all graphic characters in G0 are needed. A charac-

ter that already serves one purpose cannot be re-used for

another. First, it makes rendering of the needed G0 char-

acter incorrect, as it would now look like a Vietnamese

character. The frequency of use of G0 characters in an

integrated environment is far too high for this conict

to be tolerable. Second, while font shifting may be em-

ployed to remedy this in some situations, a more serious

problem occurs when the Vietnamese character is need-

ed. The environment would typically have assigned some

speci�c meaning to the G0 character, particularly with

those in the NRC set. Consider, for example, using the

backslash character \\" for a Vietnamese character under

Unix. The backslash is used for many escape mechanisms

under Unix so that the Vietnamese character cannot sim-

ply be used but must be escaped in one way or another.

This is more than just an inconvenience; it means data

interchange is complicated by the fact that the escape

mechanism will not be understood on another platform,

and data integrity has thus not been preserved. A stan-

dard employing this approach fails at its basic mission: to

provide cross-platform transparency. A similar case can

be made for the other G0 characters.

Both A3 and A4 propose to limit Vietnamese lan-

guage data in one way or another. Most agree that eli-

mination of some Vietnamese characters are simply un-

acceptable; indeed, this point is so fundamental that we

have in the foregoing chosen to assume it as a technical re-

quirement without elaboration. However, it must be said

that A4 is not a proposal without rationale. A school of

thought exists that believes y's existing in words as a sin-

gle vowel should be mapped to corresponding i's, as their

pronunciations are indeed identical. The concept dates

as far back as 1948 [6, 7]. However, it is not the function

of an encoding standard to settle a linguistic issue, and

hence A4 is also a bad choice.

The immediate objection to A5 is primarily in da-

ta communication channels where many C0 characters

4

Least-used because they (a) rarely begin words and therefore

do not often get capitalized, and (b) appear in fewer words.

are used as data control. In addition, it also presents

problems for integration into environments where some

C0 characters are used in the keyboard interface and in

data format controls, similar to the problem facing A1

and A2. However, as will be discussed further, judicious

choice of the 6 C0 characters to be used has in practice

been shown successfully to avoid characters that are sig-

ni�cant in data communication. Furthermore, most data

channels provide for clean transfer of binary data, and

there is no reason to worry that arbitrary data bits can-

not be employed over these binary routes.

With those particular cases where C0 is used in the

keyboard interface, judicious choice as well as remapping

of keys can minimize conict. Data format control is

application-speci�c but is typically scattered in C0 and

C1. It is therefore a universal problem for integration

because C1 is necessarily densely encoded, but, again,

conict can be avoided by studying signi�cant applica-

tions. Finally, the choice can be made for 6 least-used

Vietnamese characters so that the probability of conict

is greatly reduced.

It should be noted here that the foregoing discus-

sion has subjected the alternatives to the requirements

of integration into existing applications and platforms, as

outlined in Section 1. The importance of this goal can-

not be overstated, and it does present complications that

result in the following Pragmatism Principle: it is obvi-

ously impossible to de�ne a standard that would operate

seamlessly with all existing applications, therefore prag-

matic considerations must be made to make a standard

workable in as many important applications and on as

many platforms as possible, with emphasis on the word

\workable."

3 VISCII: 8-BIT ENCODING SPECIFI-

CATION FOR VIETNAMESE

3.1 MOTIVATION

The available body of evidence shows that alternative A5

described in the previous section, encoding into 6 of the

C0 characters, has the greatest chance of success in ful�ll-

ing the requirements outlined in Section 1. The choice of

the 6 C0 codes and the 6 least-used Vietnamese capital

letters to encode, when made carefully, greatly reduces

the probability of conict for all practical purposes. Con-

cerns regarding data communications are well addressed

by avoiding C0 codes that are in fact often used for data

control. Indeed, data communication concerns are more

applicable to C1 and G1 encoding; a prominent exam-

ple is electronic mail transfer through 7-bit gateways and

mail agents. Communication failure here has in most cas-

es been due to the use of the eighth bit and not because

A Unified Framework for Vietnamese Information Processing|v1.1 7

familiar \don't reinvent the wheel" rule is not only an

advantage|but a necessity|if a meaningful application

base is to be established in any reasonable length of time.

Furthermore, it is known that overall e�ciency both in

time and space is greater in processing precomposed char-

acter units when compared with the oating-diacritic ap-

proach [2]. Floating diacritics therefore must be limited

to only where they are necessary and inevitable, such as

in keyboard entry or 7-bit data transmission. There is no

reason to require that all applications must deal with the

complexities and ine�ciencies of oating diacritics, for

example, in 8-bit data processing, storage, transmission,

screen rendering, or printing.

The second major context points to the pragmatic

and vital consideration of existing precedents set in the

Vietnamese software base. Standardization necessarily

requires adaptation, but it makes little sense to propose

to change the world so signi�cantly that the inertia a-

gainst large changes greatly delays adoption of the stan-

dard. The trend towards 16-bit and wider data standard-

s for multinational character sets has gained momentum

with the recent works of Unicode [3] and ISO 10646 [4].

However, the need for an 8-bit Vietnamese standard is ir-

replaceable until these new standards are fully supported

and completely dominate the computing world. An 8-bit

Vietnamese standard must not ignore existing software

precedents so that it can gain speedy acceptance before

it becomes obsolete.

Thirdly, the standard must address the issue of user

interface; if not de�ning it, then at least consider its pos-

sible e�ects on the end-user. This relates primarily to the

7-bit keyboarding and representation of Vietnamese|in

both instances diacritics are necessarily oating, and rep-

resented mnemonically by existing 7-bit characters with

similar appearance. With keyboarding, one must preserve

where possible existing practices such as that de�ned

for the Viet-Net mailing list and the Usenet newsgroup

Soc.Culture.Vietnamese, both with members worldwide.

For 7-bit readable representation, the keyword is \read-

able." The goals here are to maintain a short learning

time and to promote a uniform interface so that it is not

necessary for a user to re-learn the particulars of every

software installation before being able to use it e�ective-

ly.

Finally, to every extent possible, the standard must

stay within the framework of international standards,

e.g., ISO-8859/x [5], in order to ensure compatibility with

existing environments. For example, this goal means pre-

servation of the ASCII encoding. It should extend also

to the encoding into the same 8859/Latin-1 slots those

Vietnamese characters that are already de�ned, thus en-

suring that 8859/Latin-1 keyboards will work transpar-

ently for those Vietnamese characters. However, there

are many standards requirements that are obsolete from a

practical viewpoint. For example, in recent Unicode/ISO-

10646 decisions, the prohibition from use of the available

control character space|those with encodings between

xx00h and xx1Fh, except for C0 itself|was discarded on

the grounds that it was a waste of encoding space. As will

be discussed later, the encoding of Vietnamese into the

existing 8-bit space presents some well-known trade-o�s.

Where trade-o�s are made, they must be justi�ed with

good reason|pragmatic preferred over theoretical.

These primary requirements are summarized as fol-

lows:

R1. Straightforward and direct integration into ex-

isting platforms.

R2. Ease of adaptation for existing software.

R3. User-friendly mnemonic encoding scheme and

interface.

R4. Adherence to international standards.

R5. Trade-o�s made only on practical usage consid-

erations and with good reason.

In the following section we present a brief review of

the strengths and weaknesses of di�erent approaches to

Vietnamese encoding. Section 3 will describe the pro-

posed 8-bit encoding table in detail. A quoted-readable

encoding scheme encompassing 7-bit data streams, in-

cluding electronic mail and keyboard input, is present-

ed in Section 4. Finally, Section 5 outlines the partic-

ular rules and conventions relevant in some application-

speci�c contexts.

2 REVIEW OF CURRENT CONVEN-

TIONS

A review of current conventions used by software ven-

dors reveals one distinct feature: virtually all realize the

strengths of a precomposed encoding and adopt it as a

primary requirement. The complications arise from a fa-

miliar fact: apart from the alphabetics already available

in the ASCII standard, Vietnamese requires an addition-

al 134 unique characters. Of these, 128 can be coded in

the C1 and G1 areas. The allocation of the remaining 6

characters in the lower C0 and G0 space is handled with

di�ering approaches:

A1. Encode into 6 of the \least-used" G0 characters

in the context of Vietnamese data processing.

A2. Encode into 6 slots of the National Replacement

Character

3

(NRC) set.

3

This set contains 12 country-speci�c characters at code posi-

tions corresponding to ASCII characters #, $, @, [, n,], ^, �, f, j,

g, ~.

A Uni�ed Framework for Vietnamese Information Processing

Vietnamese Standardization Working Group

1

September 1992

2

ABSTRACT

Increasing demand for Vietnamese electronic information processing has seen answer in a wide ar-

ray of Vietnamese-capable applications. The inevitable need for integration of Vietnamese into

existing environments and the exchange of data among them point to the necessity of standardiza-

tion. This paper presents the strategic and pragmatic technical considerations that must go into

such a standard, and reviews existing conventions/proposals in these important contexts. A full

description of the Viet-Std proposal is presented, including 1) an 8-bit, fully precomposed encoding

table for Vietnamese Standard Code for Information Interchange (known as VISCII), 2) a 7-bit

Vietnamese Quoted-Readable (known as VIQR) standard for data interchange over 7-bit channels,

with a seamless interface to the 8-bit encoding, and 3) a keyboard user-interface speci�cation that

works transparently with both 1 and 2. Together, these provide a truly uni�ed framework for a

Vietnamese information processing environment with simplicity, e�ciency, and straightforward in-

tegration. The real-world construction of this framework has proven quite successful in an array

of compliant applications from a number of group and individual developers across a number of

platforms, including Unix and its variants, the X window system, MS-DOS, Windows, and with

ongoing work elsewhere.

1 INTRODUCTION

With the growing Vietnamese population abroad and the

proliferation of computer usage within Viet Nam, the

Vietnamese language has seen rapidly increasing repre-

sentation in electronic information processing. The con-

comitant growth in demand for Vietnamese-capable soft-

ware has resulted in successful launches of myriad ven-

dors in the U.S. and elsewhere, mainly in the area of

Vietnamese word processing. In addition, individual

and group e�orts have also been productive in provid-

ing Vietnamese-language users with high-quality public-

domain applications. In Viet Nam, centers such as the In-

stitute of Informatics have reported impressive progress

on many fronts, among which is the Vietnamization of

standard software packages [1].

All of the above illustrate two important points:

1) There are growing market demands for Vietnamese-

capable processing engines, and 2) There is no shortage

of technical talent to ful�ll those demands. Unfortunate-

ly, therein lies a large problem: most existing Vietnamese

applications have been designed to operate in the exclu-

sive framework or environment of the developer, and all

1

Postal address: Viet-Std, 1212 Somerset Dr., San Jose, Califor-

nia 95132, USA. E-mail address: Viet-Std@Haydn.Stanford.EDU

2

This version 1.1 supersedes version 1.0 of January 1992. The

only signi�cant di�erence is the exchange of the positions of Õ (a

dot-below) and (O tilde) in the 8-bit table.

are incompatible with one another. As long as this trend

continues, the application base for Vietnamese can nev-

er keep reasonable pace with demand. Users want to do

more with Vietnamese than mere word processing, and

to expect one single vendor to provide all potential ap-

plications across all platforms is to dream the impossible.

Technicians providing these applications are limited to

the Vietnamese tools they must themselves learn and de-

velop from the ground up. Standardization is necessary.

Anyone who has had to deal with the incompatibility be-

tween ASCII and EBCDIC can try to imagine a world

where every machine is using a di�erent character set,

and appreciate how limited that world would be in its

application base and how cumbersome in its data inter-

change. A uniform framework will greatly bene�t both

the user and the technician alike.

The proposal for any Vietnamese data standardiza-

tion must take several important points in the proper

contexts. First and foremost, since this discussion is

geared toward existing 7- and 8-bit environments, the

prime goal is straightforward and direct integration on-

to current platforms. The standard must work here and

now. This implies the use of precomposed Vietnamese

characters, because the handling of oating diacritics will

never see full or simple support outside of speci�c con-

texts. The standard must be designed so as to take ad-

vantage of existing applications as much as possible. The

6

